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We investigate the stickiness of the two-dimensional piecewise linear map with a family of marginal un-
stable periodic orbits �FMUPOs�, and show that a series of unstable periodic orbits accumulating to FMUPOs
plays a significant role to give rise to the power law correlation of trajectories. We can explicitly specify the
sticky zone in which unstable periodic orbits whose stability increases algebraically exist, and find that there
exists a hierarchy in accumulating periodic orbits. In particular, the periodic orbits with linearly increasing
stability play the role of fundamental cycles as in the hyperbolic systems, which allows us to apply the method
of cycle expansion. We also study the recurrence time distribution, especially discussing the position and size
of the recurrence region. Following the definition adopted in one-dimensional maps, we show that the recur-
rence time distribution has an exponential part in the short time regime and an asymptotic power law part. The
analysis on the crossover time Tc

� between these two regimes implies Tc
��−log���R�� where ��R� denotes the

area of the recurrence region.
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I. INTRODUCTION

The slow dynamics in Hamiltonian systems has been in-
vestigated in the past few decades and is still under discus-
sion to make their mechanism and quantitative estimation
clear �1–14�. Phase space of Hamiltonian systems is so com-
plex in general; besides chaotic components, a variety of
invariant components such as Kolmogorov-Arnold-Moser
�KAM� tori, islands of stability, or cantori coexist in a single
phase space. Difficulties lie in such immense complexity of
phase space and inhomogeneity originating from various in-
variant structures. Chaotic trajectories exhibit regular mo-
tions in the neighborhood of invariant tori where they spend
a very long time, while they behave quite irregularly far
apart from invariant tori or islands of stability. This slow
motion, so-called stickiness, leads asymptotic power law de-
cay in statistical quantities.

One of the most reliable tools to examine the stickiness
numerically is the distribution of the recurrence time defined
as

PR�T� = ���x � R��R�x� = T��/��R� , �1�

where � is the invariant measure, and R a compact region in
phase space called the recurrence region. �R�x� is the first
recurrence time from an initial point x to the recurrence re-
gion R. Chirikov and Shepelyansky have studied the cumu-
lative distribution of PR�T�,

QR�T� = 	
T�=T

�

PR�T�� , �2�

and proposed that the power law exponent has a universality
property �15,16�. Several related works follow thereafter,
some assert universality and others not �9,10,17,18�.

The situation becomes simple if one considers the system
with sharply divided phase space, and exactly for this reason
recent analyses could reveal more clearly how sticky mo-
tions along the boundaries occur and under what mechanism
the recurrence time distribution exhibits power law tails
�19,20�. In a class of the mushroom billiards where a regular
component and chaotic components coexist with sharp
boundaries, a direct analysis of injection and escape regions
for the hat region of mushroom predicts explicitly the power
law exponent �21�. In the case of stadium billiards, it was
shown that the survival probability and the recurrence time
distribution obeys the power law with an integer-valued ex-
ponent because of the existence of a family of marginally
unstable periodic orbits �FMUPOs� which form a line-shaped
structure in phase space �22�.

However, even in such simple situations, the arguments
need several assumptions. Even though there is no doubt that
sticky boundaries control the slow motion, detailed mecha-
nisms have not been understood yet, for example, as to
whether or not the sticky zone can be explicitly specified,
which types of orbits coexist in the sticky zone, or what are
the most relevant ones among the sticky orbits.

One should also note that even in the definition of statis-
tical measure some ambiguities remain as compared to the
arguments for one-dimensional systems �23–25�. As dis-
cussed below, the position or size of the recurrence region R
has not seriously been discussed in two-dimensional cases,
whereas it was pointed out that subtleness exists in one-
dimensional maps �24�.

The first part of the present paper is devoted to investigat-
ing the structure of periodic orbits for a two-dimensional
piecewise linear map with FMUPOs to elucidate more ex-
plicit mechanism causing the sticky motion. We show that
there exist periodic orbits accumulating to FMUPOs, and the
power law behavior certainly originates from them. We can
specify the region in which accumulating periodic orbits ex-
ist. This allows us to investigate the survival probability,
which is a simpler measure than the recurrence time distri-*akaisi-akira@ed.tmu.ac.jp

PHYSICAL REVIEW E 80, 066211 �2009�

1539-3755/2009/80�6�/066211�12� ©2009 The American Physical Society066211-1

http://dx.doi.org/10.1103/PhysRevE.80.066211


bution. In particular, the analysis of the periodic orbit expan-
sion reveals that the periodic orbits whose stabilities increase
linearly with their period play the role of fundamental cycle,
as in the so-called cycle expansion for uniformly hyperbolic
systems, and cancel the contribution from periodic orbits
with polynomial increase in the stabilities. We show that the
most relevant periodic orbits thus picked up are responsible
for the power law decay observed in the survival probability.

The second part of the present paper concerns the defini-
tion of the recurrence time distribution. In numerical calcu-
lations, we usually take a recurrence region R with a finite
size, Area�R��0, and observes the power law decay. How-
ever, if we define the recurrence time distribution in the limit
of Area�R�→0, as done in Ref. �23�, we find an exponential
function, thereby the power law decay should be regarded as
a finite size effect. More precisely, after making a proper
normalization for the recurrence time, we show that there
exists a crossover time scale Tc

� at which the exponential
decay switches to the power law tail �11,12,26,27�, and Tc

�

tends to infinity as the size of the recurrence region Area�R�
shrinks to zero.

II. PIECEWISE LINEAR MAPS

Let us consider the two-dimensional area-preserving map
on torus T2

ª �0,1�� �0,1� defined as

x� 
 x + y� mod 1,

y� 
 y + Kf�x� mod 1, �3�

where K is a positive parameter and f�x� is a piecewise linear
function given as

f�x� =�
− x if x � �0,

1

4

 ,

− 1/2 + x if x � �1

4
,
3

4

 ,

1 − x if x � �3

4
,1
 .

� �4�

Let A denote the region of phase space
��0, 1

4 �� � 3
4 ,1��� �0,1� and B denote the region

� 1
4 , 3

4 �� �0,1� �see Fig. 1�b��. Note that the stability matrix in

A is elliptic for 0�K�4, parabolic for K=4 and hyperbolic
for K�4. The stability matrix in B is hyperbolic for K�0.
For the map with 0�K�4, the stable islands and the chaotic
components coexist in phase space. For K�4 it was rigor-
ously proved that the map is fully chaotic and no stable
islands exist in phase space �28�.

A. Map with K=4

For K=4, the map is rewritten as

�x�

y�

 
 �MA�x

y

 mod 1 if �x,y� � A ,

MB�x

y

 mod 1 if �x,y� � B ,� �5�

where

MA = �− 3 1

− 4 1

, MB = �5 1

4 1

 . �6�

The stable islands which exist for 0�K�4 shrink to form
FMUPOs. Phase space portrait for K=4 is shown in Fig.
1�a�. FMUPOs are a one-parameter family of unstable peri-
odic orbits with null stability exponent and has zero measure
in phase space. The simplest scenario of the stickiness is
based on the slow motion along FMUPOs, as studied in sta-
dium or mushroom billiards �20–22�.

In the region B, the orbits are hyperbolic, and the motion
in A is a constant shift parallel to the direction of FMUPOs
and the amount of the shift is proportional to the distance
from FMUPOs since MA is parabolic. FMUPOs consist of
periodic orbits with period 2, and each periodic point is
aligned symmetrically with respect to the center of the phase
space �see Fig. 1�b��. The direction of FMUPOs is parallel to
the direction of the eigenvector of MA.

B. Periodic orbits of the piecewise linear map

Since the map we consider is piecewise linear, enumerat-
ing periodic orbits is straightforward. A concrete procedure is
presented in Appendix A. We assign either symbol A or B to
a given orbit according to which region the orbit visits at
each step. Then each periodic orbit of the map is expressed
as a finite sequence of the symbols A and B. Note that the
number of periodic orbits for a given finite sequence is not
necessarily one since the partition into A and B is not gener-
ating.

In Fig. 2�a� we plot all the unstable periodic orbits whose
period is less than 6 for the map with K=4. Clearly, the
periodic points are not uniformly distributed in phase space.
In particular, the periodic points around FMUPOs are sparse.
This is because the periodic orbits lying in such sparse re-
gions have quite long periods. It is also easy to see that the
stability exponent of the periodic orbits close to FMUPOs is
rather small compared to the others. The distributions of the
stability exponents of unstable periodic orbits are shown in
Fig. 2�b�. We notice that there exist unstable periodic orbits
with small stability exponents, for example, in case of period
7 and period 9.
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FIG. 1. �a� A phase space portrait with K=4. �b� FMUPOs are
shown by broken lines in the region A of phase space. The arrows
parallel to FMUPOs schematically represent the motion along
FMUPOs and their length is proportional to a distance to FMUPOs.
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In Appendix B we prove there exists a series of unstable
periodic orbits whose stability increases polynomially as a
function of their period. As shown in Appendix B, the sym-
bolic sequences of these orbits are expressed as combinations
of A�B and AmB2 where � and m are integers. Suppose that
the block A�B appears p times and AmB2 q times in a periodic
orbit with length t. Let �1 , . . . ,�p be the number of A in the
block A�B, and similarly, m1 , . . . ,mq be the number of A in
the type AmB2. Since MA is a parabolic matrix, each matrix
element in MA

� MB �MA
mMB

2� is proportional to � �m�, the ei-
genvalues of the stability matrices of such a periodic orbit
are approximately �1¯�pm1¯mq while the period t is given
as t��1+ ¯+�p+m1+ ¯+mq. Therefore, the stability expo-
nent grows as log�tp+q� / t for large t. This implies the exis-
tence of infinitely many periodic orbits whose stability expo-
nents are smaller than an arbitrary small value.

Such a set of periodic orbits is also found in phase space
with the sharp boundaries between stable islands and chaotic
sea. For Kn=2�1+cos	

n � �n=2,3 , . . .�, it was shown that there
appears a single stable island of a 2n-sided polygon with a
surrounding chaotic component �28�. The stable island is
composed of periodic orbits of period n. Two edges of the
stable polygon lie on the border between A and B. The co-
ordinates of end points of the edge are, respectively, given as
�1/4,1/2� and �1 /4, �Kn−2� /4�. On the edges of the polygon,
orbits have the marginal stability since the stability matrix of
orbits of An−1B becomes parabolic. In the B region close to
the edges, the motion of orbits is a constant shift parallel to
the edge. Then one can provide, similarly in Appendix B, a
systematic procedure to find periodic orbits accumulating to
the edges �see Ref. �29��. A slight difference is as follows: in
case of K=4, A represents the linear shift and B the hyper-
bolic transformation, while in Kn=2�1+cos	

n � �n=2,3 , . . .�
case, the symbol An−1B represents a constant shift and An−2B
a hyperbolic transformation in the region close to the poly-
gon. In Fig. 3, we show periodic orbits for K=2�n=2� and
K=3�n=3�, in which only periodic orbits of the type
�An−1B��An−2B are depicted.

The existence of the periodic orbits accumulating to the
boundary of stable islands is pointed out in the study for
K=1 and for the stadium billiards �6,30�. Here, we have
obtained a wider class of the accumulating periodic orbits,
which is the series of periodic orbits whose stability in-
creases as a polynomial function of its period.

III. PERIODIC ORBIT EXPANSIONS

The asymptotic power law, observed in the survival prob-
ability or the decay of correlations, is a characteristic phe-

nomenon in nonhyperbolic systems. In this section, we will
show that periodic orbits accumulating to FMUPOs are cer-
tainly responsible for the power law decay of the survival
probability.

The asymptotic behavior of dynamical quantities is re-
lated to the spectra of the Perron-Frobenius operator L,
which describes a unit time evolution of the density distribu-
tion �31�. The spectral properties of L are investigated
through the determinant det�1−zL�. If the system is uni-
formly hyperbolic, the determinant is represented, using pe-
riodic orbit expansions �31,32�, as

det�1 − zL� = �
s=0

�

�
p�Pall

�1 −
ztp

�
p�
p
s 
 , �7�

where Pall denotes all prime periodic orbits and tp and 
p
period and linear stability of the periodic orbit p, respec-
tively.

Since we hereafter focus on the survival probability, in-
stead of the determinant �7�, we consider the dynamical zeta
function with respect to the chaotic component. The inverse
of the zeta function is given as

1

��z�
= �

p�P
�1 −

ztp

�
p�
 , �8�

where P denotes all unstable periodic orbits of prime cycle
in the chaotic component.

We now develop our arguments following that for one-
dimensional intermittent maps. Recall that for one-
dimensional intermittent maps the product over prime peri-
odic orbits after excluding marginal fixed points describes
the intermittent part of dynamics �25,32�. In analogy with the
intermittent maps, we discuss the asymptotic power law of
the present map by investigating the periodic orbit expansion
of the zeta function �8�.

The simplest situation exhibiting the power law would be
K=4 in our map. So, we restrict ourselves to the K=4 case,
in which phase space contains FMUPOs, but their measure is
zero. This allows us to consider the product of the periodic
orbit expansion which runs over all periodic orbits except for
FMUPOs.

In order to see the survival probability, we slightly modify
our map �Eq. �5�� so as to have a leaking region, and regard
the orbits reaching the leaking region as escaped from the
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FIG. 2. �a� The periodic points of all unstable periodic orbits
whose period is less than 6 for the map with K=4. �b� The distri-
butions of the stability exponents of the unstable periodic orbits.
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FIG. 3. Unstable periodic orbits accumulating to the boundary
of a stable island. �a� Phase space for K=2. �b� K=3. The periodic
orbits are represented as �An−1B��An−2B. In �a� and �b�, periodic
points for �=1, . . . ,20 are plotted.
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system. A similar treatment with such leaking regions was
recently made in Refs. �11,12�. We define the survival prob-
ability SL�n� for the system with the leaking region L by

SL�n� = ���x � X \ L���L��x� = n�/��X \ L� , �9�

where X and �L��x� denote the phase space and the first hitting
time from a point x to the region L, respectively. An
asymptotic decay of SL�n� is evaluated by the linear stability
of periodic orbits,

SL�n� � �n = 	
p

�n�
1

�
p�
, �10�

where the sum 	p
�n� runs over the periodic orbits with period

n which lie outside the leaking region L. The survival prob-
ability is then linked to the dynamical zeta function by the
formula

�n =
1

2	i
�


r

z−n� d

dz
log �−1�z�
dz , �11�

where 
r denotes a contour that encircles the origin in the
clockwise direction inside the unit circle �32�. The
asymptotic behavior of �n can be discussed through the ana-
lytic property of 1 /� in the complex plane.

The inverse zeta function 1 /� is expressed by the product
over periodic orbits �8�, and expanded with coefficients cn as

�
p�P

�1 −
ztp

�
p�
 = 1 − 	
n=1

�

cnzn. �12�

Below we will show that the zeta function in the asymptotic
regime is controlled by a subset of periodic orbits accumu-
lating to FMUPOs, not necessarily all the unstable periodic
orbits P.

To this end, we first show that the periodic orbits accu-
mulating to FMUPOs cause the power law decay in the sur-
vival probability. Let A be a set of periodic orbits whose
stability increases algebraically in their length. As mentioned
in Sec. II B, such periodic orbits are expressed as combina-
tions of A�B and AmB2 �see also Appendix B�. Note that
periodic points in A are distributed in a restricted region
around FMUPOs as shown in Fig. 4. Then we consider the
product over A and its expansion with coefficients an

�
p�A

�1 −
ztp

�
p�
 = 1 − 	
n=1

�

anzn. �13�

Since the orbits around FMUPOs are sticky and the set of
periodic orbits A is associated with these sticky orbits, it is
natural to expect that the A controls the power law behavior.
This can actually be verified by comparing the behavior of
the coefficients cn with those of an in the large n regime. As
shown in Fig. 5�a�, the coefficients an well reproduce an
expected n dependence, that is an�1 /n. �As shown in the
next subsection, 1 /n yields the power law in the survival
probability.� As also noticed in Fig. 5�b�, the difference
�cn−an� decreases exponentially with n. Therefore we may
attribute the power law behavior to the set of periodic orbits
accumulating to FMUPOs.

Although there is no rigorous proof for the behavior nu-
merically observed, the result itself is a reasonable one.
However, this is not the end of the story. Due to the simplic-
ity of the system, we can specify more explicitly the origin
of power law decay by examining the structure of A closely.

In order to explain such a structure in A, let F�1� denote a
set of periodic orbits whose symbolic representations are
given as �A2kB�k�1 and �A2k−1B2�k�1. As mentioned in the
previous section, one can show that F�1� consists of periodic
orbits whose stability increases linearly. Note that the period
of periodic orbits in F�1� is odd. We next define F�2� as the
set of periodic orbits in such a way that the symbolic repre-
sentations are given as

�A2k1−1BA2k2−1B�k1�1,k2�1,
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FIG. 4. The periodic points of periodic orbits in A. The
periodic orbits whose period is less than 15 are shown. They are
located in a restricted region around FMUPOs. Here FMUPOs are
shown by the broken lines. The shaded region shows the bounding
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�A2k1−1BA2k2B2�k1�1,k2�1,

�A2k1B2A2k2B2�k1�1,k2�1. �14�

The period of periodic orbits in F�2� is even and the stability
increases quadratically as k1 and k2 increase.

Now we discuss the role of the union of F�1� and F�2�, that
is, F=F�1��F�2�. Suppose an arbitrary periodic orbit in the
set A \F with the corresponding symbolic representation, say
A2�1BA2�2B. Then we can show that there exist periodic or-
bits in F�1� whose symbolic representation is, respectively,
given as A2�1B and A2�2B.

In the same way, any periodic orbit in A \F can be de-
composed into those orbits which are contained in F. This is
justified as follows: let us consider a symbol sequence in
which the blocks A�B and AmB2 appear p and q times, re-
spectively. We denote the total length of the sequence by t.
Suppose that �p+q�+ t is an even number. If �p+q� and t are
both odd numbers, the sequence must contain, at least, a
symbol sequence of A2�B or A2m−1B2, which has an odd
length. The remaining sequence, after excluding A2�B or
A2m−1B2 from the entire sequence, consists of �p+q�−1
blocks each of which is either A�B or AmB2. Since the length
of the remaining sequence is even, one can see that the num-
ber of odd-length blocks in the remaining sequence is even
and, consequently, the number of even-length blocks is even
as well. Since F�1� is composed of odd-length blocks and
F�2� pairs of even-length blocks as shown in Eq. �14�, the
symbol sequence is decomposed into the symbols in F�1� or
F�2�. On the other hand, if �p+q� and t are both even num-
bers, this is the case of what we have seen in the above
argument as for the remaining sequence. Finally, we note
that the sequence with an odd �p+q�+ t does not appear in A.
This is because, as shown in the last paragraph of Appendix
B, the periodic orbit of twice repetition of the sequence ap-
pears in A. Therefore, �p+q�+ t is always even.

The set of periodic orbits F therefore may play the role of
fundamental cycles in the hyperbolic systems, and this sug-
gests the application of the cycle expansion �33�. Let fn de-
note a sum of the linear stability of periodic orbits of period
n in F, namely,

fn = 	
�p�F�tp=n�

1

�
p�
. �15�

In Fig. 6, we compare the behavior of an and fn and find
excellent agreement. In particular, as shown in the inset, the
difference �an− fn� decreases exponentially. This result
strongly suggests that a similar mechanism as the cycle ex-
pansion indeed works in the set A, and the contribution from
the periodic orbits contained in A \F is shadowed by the
fundamental periodic orbits F.

We here remark the pruning in the symbolic representa-
tion of A. As explained in Appendix B, we have used in-
equalities �B5� to delimit possible symbol sequences in A.
For example, a symbol sequence A�1BA�2B appears only
when the conditions �1�7�2+6 and �2�7�1 are both satis-
fied. Some subset of periodic orbits is to be pruned by these

inequalities, and have actually been pruned in the calculation
in Fig. 6. However, at the level of numerical observations,
the effect of the pruning is not significant.

Survival probability

The result in the previous subsection shows that for large
n the coefficients cn in the whole expansion �12� can be well
approximated by the coefficients fn, the latter plays the role
of fundamental cycles in the expansion for the periodic orbits
accumulating to FMUPOs. We therefore rewrite the zeta
function �8� for our map as

1

��z�
� 1 − 	

p�F

ztp

�
p�
. �16�

In the summation over F, the periodic orbits in F�1� gives the
primary contribution to the expansion �16�. The contribution
from the set F�2� in which the stability increases quadrati-
cally with respect to the period is roughly estimated as zk /k2,
and does not affect an analytic property of 1 /�. Thus, it is
sufficient to evaluate the periodic orbit expansion �16� only
by taking into account the summation over F�1�.

The linear stability for the periodic orbits in F�1� is given
as


A2kB = 8k + 3 + ��8k + 3�2 − 1, �17�


A2k−1B2 = − �48k − 7� − ��48k − 7�2 − 1. �18�

For large k the summations over A2kB and A2k−1B2 are, re-
spectively, approximated as

	
k=1

�
z2k+1

�
A2kB�
�

1

2	
k=1

�
z2k+1

8k + 3
, �19�

	
k=1

�
z2k+1

�
A2k−1B2�
�

1

2	
k=1

�
z2k+1

48k − 7
. �20�

Now recall a general identity of the series with constants
a ,b satisfying �b /a��1
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FIG. 6. The crosses and triangles show the coefficients an and fn

in the expansion �13�. Inset: the difference �an− fn�. The broken line
is an exponential function fitted to �an− fn� in the large n region.
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k=1

�
zk

ak − b
=

1

a
	
i=1

� �b

a

i−1

Li�z� , �21�

where

Ln�z� = 	
k=1

�
zk

kn , �22�

is a polylogarithm function, e.g., L1�z�=−log�1−z� �34�. This
implies that 1 /��z� contains logarithmic contributions,
z log�1−z� and z log�1+z�, and we find associated logarith-
mic branch cuts along �1,�� and �−� ,−1� on the complex z
plane. The argument leading to the power law behavior of
the survival probability follows that developed in Ref. �25�:
the contour of the integration is deformed so as not to cross
the branch cuts: the contour for �z��1 is divided into four
parts, two half circles in the upper and the lower half plane
and two paths along two branch cuts on the real z axis. The
dominant contribution to the integration comes from the con-
tours encircling brunch cuts, and the asymptotic behavior of
the survival probability is determined by the integral at the
branch points. Around z=1 for instance, the integrand is ex-
panded as

d

dz
log �−1�z� � log�1 − z� + O��1 − z�� . �23�

From the general formula �
r
z−n log�1−z�dz=−2	i /n, the

integration along the branch cut �1,�� is evaluated by de-
forming the contour encircling the origin. Applying the same
argument for the branch cut �−� ,−1�, we obtain the
asymptotic expression of the survival probability as

�n � n−1. �24�

In order to confirm that the above argument properly pre-
dicts the survival probability SL�n� of our system, we nu-
merically calculate SL�n� of the map with a leaking region.
The survival probability is defined as Eq. �10�, and the initial
points are uniformly distributed with equal probability out-
side the leaking region. We choose the square leaking region
centered at �xc ,yc� taken away from the region in which pe-
riodic points of A are distributed �see Fig. 4�. In Fig. 7 the

survival probability for two different leaking regions is plot-
ted. As clearly seen, SL�n� tends to the prediction of the
periodic orbit expansions, that is SL�n��n−1.

IV. RECURRENCE TIME DISTRIBUTION

Not a few works have used the recurrence time distribu-
tion to capture the nature of the sticky motion in generic
Hamiltonian systems �2,8–10,17,20,27,35�. In particular,
some of them discussed the universality of the power law
exponent.

The definition of the recurrence region seems to be clear,
however, in the case of mixed phase space, since inhomoge-
neity of phase space is an essential ingredient, one needs to
choose the position and size ��R� of the recurrence region
carefully. Usually, the recurrence region R is located at a
certain appropriate position where the orbits inside the recur-
rence region thus chosen are locally hyperbolic. However, if
the size ��R� is finite and contains a small island, the distri-
bution may suffer uncontrollable effects. In generic mixed
systems, it is quite difficult to avoid such a situation no mat-
ter how small its size ��R� is.

One possible way to avoid the finite size effect of the
recurrence region is to define the recurrence time distribution
by taking the limit of ��R�→0. This has actually been done
in rigorous arguments in a class of one-dimensional hyper-
bolic map �23,24�. It should be noted that one needs to take
the limit carefully even in such a simple setting since non-
generic distribution appears when the center of recurrence
region is placed on periodic orbits.

This is a signature of inhomogeneity of phase space, but
the situation becomes more subtle if we consider the nonhy-
perbolic system. This is indeed so even in the present map.
As seen in the previous section, FMUPOs are a unique
source of stickiness and the system is hyperbolic otherwise.
Even if we put the recurrence region in the hyperbolic do-
main B, it necessarily contains stable manifolds which ema-
nating from periodic orbits accumulating to FMUPOs. The
orbits which leave in the close neighborhood of such stable
manifolds stay around FMUPOs for a long while and hence
contribute to the power law tail of the recurrence time dis-
tribution. On the other hand, the orbits close to the stable
manifolds of unstable periodic orbits in the hyperbolic do-
main may return back to the recurrence region without stay-
ing around FMUPOs, thus behave as purely hyperbolic or-
bits. Both types of stable orbits are dense in arbitrary chosen
recurrence region.

We illustrate in Fig. 8 how stable manifolds emanating
from FMUPOs are running inhomogeneously in a recurrence
region. From the construction of periodic orbits accumulat-
ing to FMUPOs, we know that these orbits are also exponen-
tially many, which means that both types of stable manifolds
occupy the recurrence region with positive Lebesgue mea-
sures.

We here examine the validity of the following ansatz in
our model. The simplest possible assumption for the recur-
rence time distribution to satisfy the above argument would
be that the distribution is given as a superposition of the
exponential distribution, reflecting the hyperbolic nature of
the system, and the power law distribution,
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FIG. 7. The survival probability for the map with a leaking
region. The leaking region is a square with the side length �=0.2
centered at �xc ,yc�. The dotted line shows SL�n�=n−1.
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P�T� = Pexp�T� + Ppow�T� . �25�

Now we further assume that the exponent for the power law
follows the already reported result, that is Ppow�T��T−3 �20�.
The exponential part is also supposed to be

Pexp�T� � exp�− ��R�T� . �26�

since the phase space region except for FMUPOs is uni-
formly hyperbolic �23�. Similar arguments of the superposi-
tion of the recurrence time distribution are discussed �16,27�.

Our ansatz �Eq. �25�� is simply based on the fact that the
orbits with hyperbolic nature dominate the short time scale
and the ones controlled by stable manifolds of accumulating
periodic orbits contribute to the long-time power law. As is
shown in Fig. 9, the distributions clearly exhibit the expo-
nential part in the short time regime and the asymptotic
power law part, implying that our proposed form is reason-
able. Here, the distribution has been computed using an ef-
ficient algorithm with better convergence of the long-time
tail, which is presented in Appendix C.

As mentioned above, one possible definition of the recur-
rence time distribution is given in the limit of ��R�→0, so
we next see how the distribution behaves as ��R� becomes
small. To this end, we pay attention to the normalization of
the recurrence time because the average recurrence time

grows monotonically when the size of recurrence region is
reduced. For ergodic systems, it was shown that the average
recurrence time is equal to the inverse of ��R� �36�. Since
our piecewise linear system has ergodicity, we employ the
normalized recurrence time

T� = ��R�T �27�

for different sizes in the recurrence region.
Figure 9 shows that the crossover time between exponen-

tial and power law regimes increases as ��R� decreases. In
these calculations, the recurrence region was chosen as a
square with the side length �. We have checked that the
observed trend does not depend on the position and the shape
of the recurrence region. We show in Fig. 10 the crossover
time Tc

�, which was numerically determined. Clearly, we ob-
serve the relation

Tc
� � − log���R�� . �28�

This relation implies that Tc
� goes to infinity in the limit of

��R�→0.
The relation of the crossover time is accounted for by the

following argument. Let us assume the form of the super-
posed distribution �25� as

P�T� = �Cexpe
−��R�T T � Tp

Cexpe
−��R�T + CpowT−3 T � Tp

� , �29�

where Cexp and Cpow are normalization constants. Here we
assumed that the power law starts at Tp, for which we only
require that Tp should be smaller than the crossover time Tc

�.
The normalization condition and the Kac’s Lemma concern-
ing the average of the recurrence time �36� is, respectively,
expressed as

1 = 	
T=1

�

P�T� , �30�
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10-10

10-8

10-6

10-4

10-2

100

10-1 100 101 102 103

Q
(T

* )

T*

ε=0.20
ε=0.10
ε=0.05
ε=0.02
ε=0.01

10-6
10-5
10-4
10-3
10-2
10-1
100

0 5 10 15 20

FIG. 9. A plot of the cumulative recurrence time distribution in
a log-log scale. The side length of the square recurrence region is
denoted by �. For each distribution, the recurrence time is normal-
ized according to Eq. �27�. Inset: the same plot in the log-normal
scale. The normalized distribution is an exponential distribution for
the short time regime and a power law distribution for the long-time
regime. There is a crossover between the two regimes and the cross-
over time becomes longer as the size of the recurrence region is
reduced.

7

8

9

10

11

12

13

14

15

10-4 10-3 10-2 10-1

T
c*

µ(R)

xc=0.5,yc=0.5
xc=0.6,yc=0.2

xc=0.75,yc=0.9

FIG. 10. A plot of the crossover time Tc
� between the exponen-

tial and the power law parts of the recurrence time distribution as a
function of the area of the recurrence region ��R�. The cases with
different positions are superposed. Each Tc

� is evaluated by fitting
the power law part of the distribution.

ACCUMULATION OF UNSTABLE PERIODIC ORBITS AND … PHYSICAL REVIEW E 80, 066211 �2009�

066211-7



1

��R�
= 	

T=1

�

TP�T� . �31�

The crossover time without normalization Tc=Tc
� /��R�

can be determined by solving an implicit relation
Cexp exp�−��R�Tc�=CpowTc

−3, and we get

Tc = −
3

��R�
W�−

��R�
3

�Cpow

Cexp

1/3� , �32�

where W�x� is the Lambert W function, which is defined as
the inverse function of f�w�=w exp�w� �37�. W�x� is a
multiple-valued function in the interval �−1 /e ,0�. Since
��R�Tc�1 meaning that W�x� is smaller than −1, Tc is de-
termined by adopting W−1�x�. Now, solving the Eqs. �30� and
�31� with respect to Cpow /Cexp with Eq. �29�, we have

Cpow

Cexp
=

��R� − �1 − e−��R��

	
T=Tp

�
1

T3 − ��R� 	
T=Tp

�
1

T2

e−��R�

�1 − e−��R��2 . �33�

Suppose that ��R� is small and that Tp increases more slowly
than as 1 /��R�. For sufficiently small ��R�, Tp can be as-
sumed to be large enough as 	T=Tp

� T−3�Tp
−2. It leads

Cpow

Cexp
� Tp

2 + O���R�� , �34�

and then ��R��Cpow /Cexp�1/3 /3 is small. For a small positive
x, we have W−1�−x�� log�x�. Therefore we reach our ex-
pected relation for the crossover time,

Tc
� = ��R�Tc � − log���R�� . �35�

The arguments on the crossover time are self-consistent,
which is another evidence for the validity of our ansatz �Eq.
�25��.

The result shows that as long as we adopt the normaliza-
tion �Eq. �27�� for the recurrence time, which is certainly one
plausible choice, one has to conclude that the recurrence
time distribution tends to obey an exponential function as the
size of the recurrence region goes to zero. The reason why
the crossover time Tc

� grows to infinity is that the stickiness
around FMUPOs significantly prolongs the average recur-
rence time. However, the FMUPOs does not affect the aver-
age recurrence time 1 /��R� since FMUPOs have null mea-
sure in phase space. The situation must be much complex in
generic mixed systems with hierarchical invariant structures.
These observations suggest the subtleness in claiming the
universality of the recurrence time distribution in the system
with sticky regions on a mathematically rigorous ground.

V. CONCLUSIONS AND DISCUSSIONS

We have investigated the stickiness of a two-dimensional
piecewise linear map which has a family of marginal un-
stable periodic orbits �FMUPOs� in phase space. Since the
phase space of generic Hamiltonian systems is complicated,
it is reasonable to study the simplest possible systems. Al-
though some generic features might be lost in the simplifi-

cation, which is certainly the price we have to pay, it would
be an inevitable step to have a better understanding of the
issue. The piecewise linear map we have studied here has
simple phase space structures exactly because of piecewise
linearity of each region. However, for generic K the bound-
ary between regular and chaotic components is still difficult
to describe �7,28�, thus we have focused on the case with
specific values of K, for which there is a proof showing that
the boundary between regular and chaotic components is
composed of strictly straight lines �28�. Since regular com-
ponents in phase space for such specific values of K are
composed of periodic orbits with fixed period, not irrational
rotations on ordinary KAM curves, the obtained result may
reflect specific natures of the system. Here we have further
limited ourselves to the case K=4 in which only FMUPOs
lie as nonhyperbolic components.

We first showed that there exists a series of unstable pe-
riodic orbits which accumulate to FMUPOs. �The result is
generalizable to the case with the sharply divided phase
space for Kn=2�1+cos	

n � �n=2,3 , . . .�.� Each periodic orbit
is labeled by a sequence of two symbols, and the observation
for this symbolic coding reveals that stabilities of these pe-
riodic orbits increase as a polynomial function of its period.
Note that unstable periodic orbits with a similar property
have been found for other systems as the stadium and Sinai
billiards and also for the systems with sharply divided phase
space �6,30�.

In addition, we could specify the region in which accu-
mulating periodic orbits exist, which means that the “sticky
zone” is only a part of phase space, not gradually extended to
the entire phase space. This fact enables us to design the
system for which the survival probability from the FMUPOs
is examined. If choosing the leaking region such that it lies
outside the sticky zone, we can realize an open system with
all the accumulating periodic orbits being untouched.

For such an open system, we have applied the periodic
orbit theory, especially evaluated the survival probability via
the dynamical zeta function. Since the periodic orbit expan-
sion requires all the periodic orbits of the system, it is not
easy in general to apply to the system without a good sym-
bolic dynamics associated with generating partitions. How-
ever, thanks to the piecewise linearity and the existence of an
efficient symbolic coding, though it is not generating, we
could enumerate all the periodic orbits numerically. More
importantly we have revealed that the cancellation mecha-
nism works in the set of accumulating periodic orbits. That
is, among accumulating periodic orbits with polynomial sta-
bility, the periodic orbits with linearly increasing stability,
the slowest growth rate, play the role of fundamental cycles
in the periodic orbit expansion, and the contribution from the
rest of accumulating orbits with faster growth rate, but still
polynomial, is cancelled by the fundamental cycles. The situ-
ation is quite similar to the hyperbolic system where the
cycle expansion works using the shadowing mechanism be-
tween periodic orbits �33�. Assuming the dynamical zeta
function only including the periodic orbits with linearly in-
creasing stability, we have derived the power law decay of
the survival probability, which shows good agreement with
the numerically obtained survival probability.

In the second part, we have analyzed the recurrence time
distribution, which is often used to discuss the slow motion.
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For the survival probability, we have only to concentrate on
the slowest rate-controlling process and we can forget about
escaping orbits. The recurrence time distribution is a similar
measure as the survival probability, but it more reflects glo-
bal nature of the phase space.

We here discussed some ambiguities in its definition, that
is, the position or size of the recurrence region R. Our nu-
merical observation shows that the recurrence time distribu-
tion has the exponential part in a short time regime and the
asymptotic power law part. It also shows that there is a cross-
over time Tc

� between the two regimes, and Tc
� varies depend-

ing on the size of the recurrence region. Assuming that the
recurrence time distribution is a superposition of the expo-
nential distribution and the power law distribution, we derive
the behavior as Tc

��−log���R��, which has been confirmed
numerically. This implies that as the size of the recurrence
region ��R� gets smaller the exponential part tends to domi-
nate the recurrence time distribution. Therefore, when adopt-
ing a canonical definition for the recurrence region, as is
introduced in one-dimensional maps �23�, one must conclude
that the recurrence time distribution is exponential, and the
power law decay usually claimed in the literature is regarded
as a finite size effect.
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APPENDIX A: A PROCEDURE TO ENUMERATE
PERIODIC ORBITS

Assuming that the map is composed of � distinct piece-
wise linear regions in general, we here give a method to
compute the periodic orbits. We consider the case of two-
dimensional maps while the generalization to higher-
dimensional maps is easily implementable. Let �sn�n=1

� be the
symbols assigned to each piecewise linear region, then we
expressed the map as

�x�

y�

 
 Msn

�x

y

 + Csn

if �x,y� � sn mod 1, �A1�

where Msn
is a constant real matrix which satisfies

det Msn
=1 and Csn

a constant real vector. We assign symbols
sn to each orbit according to which region the orbit visits.
Then periodic orbits are represented as the repetition of a
finite sequence. We consider a periodic orbit with period p
whose corresponding symbol is given by S1S2¯Sp where
Si� �s1 ,s2 , . . . ,s��. The condition for the periodicity is ex-
presses as

MS1
�x1

y1

 + CS1


 �x2

y2

 mod 1,

MS2
�x2

y2

 + CS2


 �x3

y3

 mod 1,

]

MSp
�xp

yp

 + CSp


 �x1

y1

 mod 1, �A2�

where �xi ,yi� is the ith periodic point contained in the region
Si. This can be rewritten as

M�1��x1

y1

 − �x2

y2

 = � n1

m1

 − C�1�,

M�2��x2

y2

 − �x3

y3

 = � n2

m2

 − C�2�,

]

M�p��xp

yp

 − �x1

y1

 = � np

mp

 − C�p�, �A3�

where �ni ,mi� is a pair of integers determined from the left-
hand side of the ith equation in Eq. �A2�. Note that the maxi-
mal and minimal values of ni and mi are finite. By solving
these equations with respect to �xi ,yi� �i=1,2 , . . .�, we obtain

�x1

y1

 = �MpMp−1 ¯ M1 − I�−1�MpMp−1 ¯ M2�� n1

m1

−C�1�


+ MpMp−1 ¯ M3�� n2

m2

 − C�2�


+ ¯ + �� np

mp

 − C�p�
� ,

�x2

y2

 = �M1Mp ¯ M2 − I�−1�M1Mp ¯ M3�� n2

m2

 − C�2�


+ M1Mp ¯ M4�� n3

m3

 − C�3�


+ ¯ + �� n1

m1

 − C�1�
� ,

]

�xp

yp

 = �Mp−1 ¯ M1Mp − I�−1�Mp−1 ¯ M1�� np

mp

 − C�p�


+ Mp−1 ¯ M2�� n1

m1

 − C�1�


+ ¯ + �� np−1

mp−1

 − C�p−1�
� . �A4�

We then substitute possible values of integers �ni ,mi�i=1
p into

the right-hand side of Eq. �A4�, and check whether or not the
resulting �xi ,yi� is consistent with the conditions �xi ,yi��Si
�i=1,2 , . . . ,k�. If �xi ,yi� is in the region Si for all i, the
desired periodic orbit is obtained.
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APPENDIX B: UNSTABLE PERIODIC ORBITS
ACCUMULATING TO FMUPOS

In this appendix, we show the existence of a series of
unstable periodic orbits close to FMUPO in the map �Eq.
�5��. To this end, let us first consider the region parametrized
by the variables �c ,��

I ª ��x,y� = �1/4 − c�,1/2 + � − 2c���0 � � � 1/2 and 0

� c � 1� . �B1�

Here the point E1= �1 /4,1 /2� is one of the end points of
FMUPOs and the region I is shown as a shaded area in Fig.
11�a�.

It is easy to check that the orbit leaving I, Fi�x0 ,y0�
��x0 ,y0��I�, moves parallel to FMUPOs for 0� i�n,
where n is given as

n = � 1

2�
− c� + 1. �B2�

Here �x� denotes the integer part of x. After n steps, the point
enters the region B.

Next we denote the map �Eq. �5�� in the region A and B
by FA and FB, respectively, and define the symmetric trans-
formation with respect to the center of phase space as
S�x ,y�ª �1−x ,1−y�. Suppose that the point �x0 ,y0��I is
mapped to �x1 ,y1� up to the symmetry, that is, FA

n�x0 ,y0�
=Sn�x1 ,y1�. Here we express �x1 ,y1� using an alternative set
of parameters �d ,�� as �x1 ,y1�= �3 /4−d� ,1 /2+�−2d��,
where

d = n − � 1

2�
− c
 . �B3�

The time evolution of �x1 ,y1� by FB, near the opposite
end point E2= �3 /4,1 /2�, differs depending on d,
as shown in Fig. 11�b�. For 1 /7�d�1, the point
�x1 ,y1� enters A in a single iteration, and we have

FB�x1 ,y1�=S�3 /4−�+7d� ,1 /2−�+6d��. For 0�d�1 /7,
�x1 ,y1� stays B in a single iteration and enters A
in the next iteration. Then we have FB

2�x1 ,y1�
=S2�3 /4+6�−41d� ,1 /2+5�−34d��. In Fig. 11�b� we depict
the evolution of �x1 ,y1� by line segments �see the caption�.

In this way, the point �x1 ,y1� comes back, up to the sym-
metry with respect to S, to the initial region I. Therefore we
can construct the map on I as

F�x0,y0� = �F1 ª FB � FA
n�x0,y0�

1

7
� d � 1

F2 ª FB
2 � FA

n�x0,y0� 0 � d �
1

7
� . �B4�

In order to obtain periodic orbits, it suffices to solve the
equation Fs�x0 ,y0�= �x0 ,y0� for s=1,2 , . . .. The simplest one
is to solve the equation F�x0 ,y0�= �x0 ,y0�. In this case, we
solve the equations F1�x0 ,y0�= �x0 ,y0� and F2�x0 ,y0�
= �x0 ,y0� for given n, taking into account the symmetry: in
the first equation in Eq. �B4�, n has to be an odd integer.
Similarly, n has to be an even integer for F1, then we have
periodic orbits in the forms of FB �FA

2k and FB
2 �FA

2k−1

�k=1,2 , . . .� �Fig. 12�. On the other hand, in the case of odd
n for F1, the twice repetition of F1, i.e., FB �FA

2k−1 �FB

�FA
2k−1 turns out to be periodic orbits, and similarly in the

case of even n for F2, the twice repetition of F2, i.e., FB
2

�FA
2k �FB

2 �FA
2k gives periodic orbits.

Also for s�2, the set of equations has solutions at least
formally since we have 2s equations for 2s variables �xj ,yj�
�j=1,2 , . . . ,s�. Here �� j ,cj� represent the set of parameters
for each �xj ,yj�. However, for s�2, not all of solution are
not necessarily the periodic orbits. To show this, for each
�� j ,cj�, we put nj as the sequence of integers determined
nj = �1 /2� j −cj�+1, and also dj =cj +nj −1 /2� j. Since there
exists a mapping relation �B4�, we necessarily have some
relation between successive ni and ni+1. More explicitly, they
are expressed as

ni+1 � 7ni + 6, ni � 7ni+1
1

7
� di � 1,

ni+1 � 7ni + 5, ni � 7ni+1 − 1 0 � di �
1

7
. �B5�

Due to these conditions, for some given sequence
�n1 ,n2 , . . . ,ns�, the formal solution for Fs�x0 ,y0�= �x0 ,y0�
cannot be the periodic orbit. This means that the pruning of
the periodic orbits happens for s�2.

In addition, similarly in the case of s=1, the symmetry
must be taken into account. The formal solution is periodic if
N=s+	 j=1

s nj + ij is an even number, where ij =1 for F1 and
ij =2 for F2. For odd N, the twice repetition leads periodic
orbits.

APPENDIX C: AN EFFICIENT ALGORITHM TO
CALCULATE THE RECURRENCE TIME
DISTRIBUTION IN ERGODIC SYSTEMS

The ordinary algorithm to calculate the recurrence time
distribution requires a uniform ensemble of initial points in
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FIG. 11. �a� FMUPOs and the point moving along FMUPOs.
The region I is shown in a shaded area, and the broken line repre-
sents FMUPOs. The point inside I shown as an open circle moves
parallel to FMUPOs. c� and � represent the distance from FMUPOs
in the x and y directions, respectively. �b� The plot of the time
evolution by FB around the end point of FMUPOs E2 �the square
region enclosed by dotted lines in �a��, and the inset is its magnifi-
cation. The points P ,M ,Q represent �x1 ,y1� for d=0, d=1 /7 and
d=1, respectively. The time evolution of line segments is shown
ignoring the symmetry of the map: the line segment PM moves to
FB�Q�FB

2�M� the line segment MQ moves to FB�M�FB�Q�. FB�M�
lies on x=3 /4.
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the recurrence region. We here introduce an alternative algo-
rithm for practical computations using a uniform ensemble in
phase space.

Let X be phase space and f be a differentiable function
onto X and � be an invariant measure, that is
∀A�X , ��A�=��f−1�A��. Let us assume that a dynamical
system �X , f ,�� is ergodic. Due to the ergodicity, for ∀x0
�X, the measure of a compact region R�X can be given by
the time average,

��R� = lim
T→�

1

2T 	
i=−T

T−1

1R�f i�x0�� , �C1�

where 1R�x� is the indicator function of R, i.e., 1R�x�=1 if
x�R ,0 if x�R. Let us consider a segment of the trajectory
�fs�x� , . . . , fs+t�x�� which starts from R and returns to R,
fs�x� , fs+t�x��R and f i�x��R�s� i�s+ t�. The recurrence
time of the segment is t. A single segment of the recurrence
time t makes a contribution of t−1 points of the trajectory in
the region outside R �Fig. 12�. The points of the recurrence
segment in X \R have the weight,

wt =
1

t − 1
. �C2�

Since for the weight �Eq. �C2�� the recurrence time has to be
t�2, the recurrence segments for t=1 are not taken account
in X \R. The algorithm to calculate the recurrence time dis-
tribution using a uniform ensemble in phase space is given as
follows:

�1� Choose an initial point x�X from a uniform ensemble
in phase space.

�2� In case of x�R, calculate the recurrence time t by the
forward and backward iteration, and put the corresponding
weight as wt=1 / �t−1�.

�2�� In case of x�R, check f�x��R or not. If f�x��R,
put the weight as wt=1=1. Otherwise, discard x.

�3� Evaluate the distribution of the recurrence time with
the weight wt from the ensemble.

Note that the procedure �2�� gives the probability for the
recurrence time t=1.

The algorithm we introduced here is efficient in conver-
gence of the tail of the distribution. Since the weight wt
decreases as t increases, the longer recurrent segments in the
computation are detectable from the ensemble comparing to
the ordinary algorithm.
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